Energy-conscious, deterministic I/O device scheduling in hard real-time systems
نویسندگان
چکیده
Energy consumption is an important design parameter for embedded and portable systems. Software-controlled (or dynamic) power management (DPM) has emerged as an attractive alternative to inflexible hardware solutions. However, DPM via I/O device scheduling for real-time systems has not been considered before. We present an online I/O device scheduler, which we call lowenergy device scheduler (LEDES), for hard real-time systems that reduces the energy consumption of I/O devices. LEDES takes as inputs a predetermined task schedule and a device-usage list for each task and it generates a sequence of sleep/working states for each device such that the energy consumption of the device is minimized. It also guarantees that real-time constraints are not violated. We then present a more general I/O device scheduler, which we call multistate constrained low-energy scheduler (MUSCLES), for handling I/O devices with multiple power states. MUSCLES generates a sequence of power states for each I/O device while guaranteeing that real-time constraints are not violated. We present several realistic case studies to show that LEDES and MUSCLES reduce energy consumption significantly for hard real-time systems.
منابع مشابه
Utilizing Device Slack for Energy-Efficient I/O Device Scheduling in Hard Real-Time Systems with Non-preemptible Resources
The challenge in conserving energy in embedded real-time systems is to reduce power consumption while preserving temporal correctness. Much research has focused on power conservation for the processor, while power conservation for I/O devices has received little attention. In this paper, we analyze the problem of online energy-aware I/O scheduling for hard real-time systems based on the preempt...
متن کاملStudy of Scheduling Problems with Machine Availability Constraint
In real world scheduling applications, machines might not be available during certain time periods due to deterministic or stochastic causes. In this article, the machine scheduling with availability constraints for both deterministic and stochastic cases with different environments, constraints and performance measures will be discussed. The existing body of research work in the literature wil...
متن کاملIntra-task device scheduling for real-time embedded systems
An ever increasing need for extra functionality in a single embedded system demands for extra Input/Output (I/O) devices, which are usually connected externally and are expensive in terms of energy consumption. To reduce their energy consumption, these devices are equipped with power saving mechanisms. While I/O device scheduling for real-time (RT) systems with such power saving features has be...
متن کاملIntegrated Device Scheduling and Processor Voltage Scaling for System-wide Energy Conservation
The challenge in conserving energy in embedded real-time systems is to reduce power consumption while preserving temporal correctness. Previous research has focused on power conservation for either the processor or I/O devices alone. The system-wide energy conservation has received little attention. In this paper, we analyze the problem of system-wide energy-efficient scheduling for hard real-t...
متن کاملSafety Verification of Real Time Systems Serving Periodic Devices
In real-time systems response to a request from a controlled object must be correct and timely. Any late response to a request from such a device might lead to a catastrophy. The possibility of a task overrun, i.e., missing the deadline for completing a requested task, must be checked and removed during the design of such systems. Safe design of real-time systems running periodic tasks under th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. on CAD of Integrated Circuits and Systems
دوره 22 شماره
صفحات -
تاریخ انتشار 2003